Is our Universe Remnant of Chiral Anomaly in Inflation?

> Based on arXiv:2012.11516 & arXiv:2103.14611

> > Azadeh Malek-Nejad CERN

 $\nabla_{\mu} J_5^{\mu}$

 W_{R}

 $\mathcal{N}W_{\mathrm{R}}$

 $SU(2)_R$ -Axion Inflation

March 2021

Cosmic History

<u>Cosmic History</u>

Our Universe is expanding. For many it was filled with a **hot** plasma.

As it expands it becomes colder and colder.

<u>Cosmic History</u>

Big Bang

Singularity

Our Universe is expanding. For many it was filled with a hot plasma.

As it expands it becomes colder and colder.

When temperature got below 1 eV, neutral atoms &

Cosmic Microwave Background (CMB) is formed.

<u>Cosmic History</u> Plasi Our Universe is expanding. For many it was filled with a hot plasma. Big Bang As it expands it becomes colder and colder. CMB when temperature got below Singularity Ares 1 eV, neutral atoms & Cosmic Microwave Background (CMB) is formed. Those initially hot atoms T=1eV slowly assembled & cooled into Cold Large Scale Structures.

Cosmic Inflation

Guth Phys. Rev. D23 (1981) Linde Phys. Lett. B 108 <u>(1982)</u>

A period of exponential expansion of space shortly after the Big Bang

Cosmic Inflation

Guth Phys. Rev. D23 (1981) Linde Phys. Lett. B 108 (1982)

A period of exponential expansion of space shortly after the Big Bang a_f Inflation a_i Modern Universe CMB CMB photon Big Bang Singularity $\underline{a_f}$ $= e^{60} \approx 10^{26}!$ a_i $D \approx 10 \ \mu m$ Bacterium Milky Way Energy Time

What caused inflation?

A scalar field "slow-rolling" toward its true vacuum provides a simple model for inflation.

What caused inflation?

A scalar field "slow-rolling" toward its true vacuum provides a simple model for inflation.

 $\rho = \frac{1}{2}\dot{\phi}^2 + V(\phi)$ $\mathsf{P} = \frac{1}{2}\dot{\phi}^2 - V(\phi)$ $V(\varphi)$ Slow-roll inflation Flat potential φ $\Delta \varphi$

It is assumed that the cosmos was filled with a homogenous scalar field beyond the SM in inflation

$$\phi(t, \vec{x}) = \phi(t)$$

Quantum Fluctuations

$\hbar \neq 0$

Quantum Vacuum $\hbar \neq 0$

Due to Uncertainty Principle

 $\Delta x \, \Delta p \geq \frac{\hbar}{2}$

quantum vacuum is NOT nothing!

Quantum Vacuum $\hbar \neq 0$

Due to Uncertainty Principle

 $\Delta x \, \Delta p \geq \frac{\hbar}{2}$

quantum vacuum is NOT nothing! But, a vast ocean made of

Virtual particles

VACUUM

Quantum Vacuum

Due to Uncertainty Principle

 $\Delta x \, \Delta p \geq \hbar/2$

the quantum vacuum is NOT nothing!

But, a vast ocean made of

Background field can upgrade them into actual particles! Examples of such BG fields: 1) Electric (Schwinger effect) 2) Gravitational (Gravitational production)

Actual particles

Particle Production

Virtual particles

BG field

Inflation Produces Particles!

Flat Space:

Expanding space:

Space

Vacuum

Particle Production

Inflation Produces Particles!

Flat Space:

Vacuum

Particle Production

Shocked by his discovery, Schrödinger found it an alarming phenomenon!

Expanding space:

Edwin Schrödinger

(1939)

Cosmic Perturbations Primordial

Exponential expansion turns initial quantum vacuum fluctuations into

actual cosmic perturbations!

We are the product of quantum fluctuations in the very early universe! (Stephen Hawking)

Primordial Gravitational Waves

Inflation also predicts primordial GWS:

Primordial GWs: tiny waves in the fabrics of the space-time that squeeze and stretch anything in their path as they pass by.

Primordial Gravitational Waves

o Vacuum GWS

$\Box h_{ij} = 0 \implies h_{\pm} = h_{\pm}^{vac}$

Circular polarizations

Primordial Gravitational Waves

• Vacuum GWS $\Box h_{ij}=0 \longrightarrow h_{\pm}=h_{\pm}^{vac}$ • Unpolarizaed $<|h_{\pm}^{vac}|^{2}>=<|h_{\pm}^{vac}|^{2}>$ • Nearly Gaussian

Circular polarizations

<u>Cosmic Perturbations-Gravitational Waves</u>

• Observations are in perfect agreement with Inflation.

- The Particle Physics of Inflation is still unknown.
- The Standard models of inflation are based on Scalars.

Inflation Particle Physics: - a scalar singlet BSM

-Unpolarized, Gaussian GW

• Observations are in perfect agreement with Inflation.

- The Particle Physics of Inflation is still unknown.
- The Standard models of inflation are based on Scalars.

Inflation Particle Physics: - a scalar singlet BSM

-Unpolarized, Gaussian GW

Puzzles of SM & Cosmology

- I) Particle physics of Inflation
- II) Origin of matter asymmetry
- III) Origin of Neutrino mass
- IV) Particle nature of DM

Puzzles of Standard Model of Particle Physics (SM) & Cosmology Which need Physics Beyond SM

Inflation m_{1} Observabl

Matter asymmetric

Universe is highly matter asymmetric

 $\eta_{B} = \frac{n_{B} - n_{\overline{B}}}{n_{\gamma}} \approx 6 \times 10^{-10}$ - Statistical fluctuations ***** (Too small)
- Initial condition ***** (due to inflation)
Must be produced dynamically, i.e. **Baryogenesis** by

- Baryon number violation,

Sakharov Conditions: - C and CP violation,

- Out of thermal equilibrium

Physics Beyond the Standard Model!

SM Has All, But Too Tiny!

Puzzles of SM & Cosmology

- I) Particle physics of Inflation
- II) Origin of matter asymmetry
- III) Origin of Neutrino mass
- IV) Particle nature of DM

Puzzles of Standard Model of Particle Physics (SM) & Cosmology Which need **Physics Beyond SM**

Curious cosmological coincidences $\eta_B \simeq 0.3 P_{\zeta}$ and $\Omega_{DM} \simeq 5\Omega_B$!

$$\eta_B = \frac{\mathbf{n}_B - \mathbf{n}_{\bar{B}}}{\mathbf{n}_{\gamma}} \approx 6 \times 10^{-10}$$

Baryon to Photon Ratio Today

$$P_{\zeta} = \frac{1}{2\epsilon} \left(\frac{1}{2\pi} \frac{H}{M_{pl}} \right)^2 \approx 2 \times 10^{-9}$$

Inflation

 m_{γ}

Dhserva

Curvature Power Spectrum in Inflation

Puzzles of SM & Cosmology

- I) Particle physics of Inflation
- II) Origin of matter asymmetry
- III) Origin of Neutrino mass
- IV) Particle nature of DM

Puzzles of Standard Model of Particle Physics (SM) & Cosmology Which need Physics Beyond SM Inflation

Observab

- Curious cosmological coincidences $\eta_B \simeq 0.3 P_{\zeta}$ and $\Omega_{DM} \simeq 5\Omega_B$!
- 1. Ad hoc parity violation
- 2. Accidental B-L global symmetry
- 3. Vacuum Stability problem
- 4. Strong CP problem

SM as a particle physics model also faces some conceptual issues

Gauge Fields & Inflation

Why Gauge Fields in Inflation?!

- Why not?
- Inflation happened at highest energy scales observable!
- Gauge fields are ubiquitous, building blocks of SM & beyond.
- What do they do in inflation?

 $E_{Lnf} < 10^{14} GeV$

Why Gauge Fields in Inflation?!

- Why not?
- Inflation happened at highest energy scales observable!
- Gauge fields are ubiquitous, building blocks of SM & beyond.
- What do they do in inflation?
- I. Can Gauge Fields Contribute to Physics of Inflation? Yes!
- II. Do they leave an observable signature? Yes! Robust prediction for GW background.
- III. How much they can change the cosmic history? A lot! Novel mechanisms for Baryo- and Dark-genesis.

 $E_{Lnf} < 10^{14} GeV$

- 1) Conformal symmetry of Yang-Mills gauge field dilutes like $A_{\mu} \sim 1/a$
- 2) Respecting gauge symmetryNot to break gauge symmetry explicitly

A.M. & Sheikh-Jabbari, 2011

- 1) Conformal symmetry of Yang-Mills gauge field dilutes like $A_{\mu} \sim 1/a$
- 2) Respecting gauge symmetryNot to break gauge symmetry explicitly
- 3) Spatial isotropy & homogeneity U(1) vacuum A_{μ}
 - $\overline{A_i} = Q(t)\delta_i^3$

A.M. & Sheikh-Jabbari, 2011

Adding new terms to the gauge theory

 $\frac{\kappa}{384} (F\tilde{F})^2$ $\frac{\lambda}{8f} F\tilde{F} \varphi^{\text{Axion}}$

SU(2) vacuum $A_{\mu} = A^{a}_{\mu} T_{a}$ $[T_{a}, T_{b}] = i \varepsilon^{abc} T_{c}$ Spatially isotropic $A^{a}_{i} = Q(t)\delta^{a}_{i}$

so(3) & su(2) are isomorphic

SU(2)-Axion Model Building

- Gauge-flation A. M., & Sheikh-Jabbari, 2011 $S_{Gf} = \int d^4x \sqrt{-g} \left(-\frac{R}{2} - \frac{1}{4}F^2 + \frac{\kappa}{384}(F\tilde{F})^2 \right)$
- Chromo-natural P. Adshead, M. Wyman, 2012

$$S_{Cn} = \int d^4x \sqrt{-g} \left(-\frac{R}{2} - \frac{1}{4}F^2 - \frac{1}{2} \left((\partial_\mu \varphi)^2 - \mu^4 \left(1 + \cos(\frac{\varphi}{f}) \right) \right) - \frac{\lambda}{8f} \varphi F \tilde{F} \right)$$

SU(2)-Axion Model Building

- Gauge-flation A. M., & Sheikh-Jabbari, 2011 $S_{Gf} = \int d^4x \sqrt{-g} \left(-\frac{R}{2} - \frac{1}{4}F^2 + \frac{\kappa}{384}(F\tilde{F})^2 \right)^{-4}$
- Chromo-natural P. Adshead, M. Wyman, 2012

Ruled-out by the data

R. Namba, E. Dimastrogiovanni, M. Peloso 2013 P. Adshead, E. Martinec, M. Wyman 2013

> + Theoretical issue: <u>Very large $\lambda \sim 100!$ </u>

D. Baumann & L. McAllister 2014

$$S_{Cn} = \int d^4x \sqrt{-g} \left(-\frac{R}{2} - \frac{1}{4}F^2 - \frac{1}{2} \left((\partial_\mu \varphi)^2 - \mu^4 \left(1 + \cos(\frac{\varphi}{f}) \right) \right) - \frac{\lambda}{8f} \varphi F \tilde{F} \right)$$

Inspired by them, several different models with SU(2) fields have been proposed and studied.

An incomplete list of Different Realizations of the SU(2)-Axion Inflation:

- 1. A. M. and M. M. Sheikh-Jabbari, Phys. Rev. D 84:043515, 2011 [arXiv:1102.1513]
- 2. P. Adshead, M. Wyman, Phys. Rev. Lett.(2012) [*arXiv:1202.2366*]
- 3. **A. M.** JHEP 07 (2016) 104 [arXiv:1604.03327]
- 4. C. M. Nieto and Y. Rodriguez Mod. Phys. Lett. A31 (2016) [arXiv:1602.07197]
- 5. E. Dimastrogiovanni, M. Fasiello, and T. Fujita JCAP 1701 (2017) [arXiv:1608.04216]
- 6. P. Adshead, E. Martinec, E. I. Sfakianakis, and M. Wyman JHEP 12 (2016) 137 [arXiv:1609.04025]

....

- 7. P. Adshead and E. I. Sfakianakis JHEP 08 (2017) 130 [arXiv:1705.03024]
- 8. R. R. Caldwell and C. Devulder Phys. Rev. D97 (2018) [arXiv:1706.03765]
- 9. E. McDonough, S. Alexander, JCAP11 (2018) 030 [arXiv:1806.05684]
- 10. L. Mirzagholi, E. Komatsu, K. D. Lozanov, and Y. Watanabe, [arXiv:2003.04350]
- 11. Y. Watanabe, E. Komatsu, [arXiv:2004.04350]
- 12. J. Holland, I. Zavala, G. Tasinato, [arXiv:2009.00653]
- 13.

A. M., SU(2)R –axion inflation [arXiv:2012.11516]

SU(2)-Axion Model Building

- Gauge-flation A. M., & Sheikh-Jabbari, 2011 $S_{Gf} = \int d^4x \sqrt{-g} \left(-\frac{R}{2} - \frac{1}{4}F^2 + \frac{\kappa}{384}(F\tilde{F})^2 \right)^{-4}$
- Chromo-natural P. Adshead, M. Wyman, 2012

Ruled-out by the data

R. Namba, E. Dimastrogiovanni, M. Peloso 2013 P. Adshead, E. Martinec, M. Wyman 2013

> + Theoretical issue: Very large $\lambda \sim 100!$

D. Baumann & L. McAllister 2014

$$S_{Cn} = \int d^4x \sqrt{-g} \left(-\frac{R}{2} - \frac{1}{4}F^2 - \frac{1}{2} \left((\partial_\mu \varphi)^2 - \mu^4 \left(1 + \cos(\frac{\varphi}{f}) \right) \right) - \frac{\lambda}{8f} \varphi F \tilde{F} \right)$$

SU(2)-Axion inflation has a very rich phenomenology:

P. Adshead et. al 2013 Dimastrogiovanni et. al 2013 **A. M.** et. al, 2013

- O A new mechanism for generation of Primordial Gravitational Waves A. M. et. al, 20:
- o All Sakharov conditions are satisfied in inflation: a new baryogenesis mechanism R. Caldwell et. al 2017
- O Particle Production in inflation by Schwinger effect and chiral anomaly A.M. et. al 2017 & 2018 A.M. 2019

A. M. 2014 & A.M. 2016

SU(2)-Axion Model Building

• Gauge-flation A. M., & Sheikh-Jabbari, 2011 $S_{Gf} = \int d^4x \sqrt{-g} \left(-\frac{R}{2} - \frac{1}{4}F^2 + \frac{\kappa}{384}(F\tilde{F})^2 \right) + \text{Theoretical issue:}$ • Chromo-natural P. Adshead, M. Wyman, 2012 $S_{eff} = \int d^4x \sqrt{-g} \left(-\frac{R}{2} - \frac{1}{4}F^2 + \frac{\kappa}{384}(F\tilde{F})^2 \right) + \frac{\kappa}{284}(F\tilde{F})^2 \right) + \frac{\kappa}{284} \sqrt{-g} \left(-\frac{R}{2} - \frac{1}{4}F^2 + \frac{\kappa}{384}(F\tilde{F})^2 \right) + \frac{\kappa}{284} \sqrt{-g} \left(-\frac{R}{2} - \frac{1}{4}F^2 + \frac{\kappa}{384}(F\tilde{F})^2 \right) + \frac{\kappa}{284} \sqrt{-g} \left(-\frac{R}{2} - \frac{1}{4}F^2 + \frac{\kappa}{384}(F\tilde{F})^2 \right) + \frac{\kappa}{284} \sqrt{-g} \left(-\frac{R}{2} - \frac{1}{4}F^2 + \frac{\kappa}{384}(F\tilde{F})^2 \right) + \frac{\kappa}{284} \sqrt{-g} \left(-\frac{R}{2} - \frac{1}{4}F^2 + \frac{\kappa}{384}(F\tilde{F})^2 \right) + \frac{\kappa}{284} \sqrt{-g} \left(-\frac{R}{2} - \frac{1}{4}F^2 + \frac{\kappa}{384}(F\tilde{F})^2 - \frac{\kappa}{384}(F\tilde{F})^2 \right) + \frac{\kappa}{284} \sqrt{-g} \left(-\frac{R}{2} - \frac{1}{4}F^2 + \frac{\kappa}{384}(F\tilde{F})^2 - \frac{\kappa}{384}(F\tilde{F})^2 \right) + \frac{\kappa}{284} \sqrt{-g} \left(-\frac{\kappa}{2} - \frac{1}{4}F^2 + \frac{\kappa}{384}(F\tilde{F})^2 - \frac{\kappa}{3$

$$\int d^{\mu} x \sqrt{g} \left(2 4^{\mu} 2 \left(2 4^{\mu} 2 \right)^{\mu} \left(1 + \cos(f) \right) \right) 8f^{\mu} \right)$$

• Minimal Scenario of SU(2)-axion inflation A.M., 2016 f<0.1 Mpl & λ <0.1

$$S_{AM} = \int d^4x \sqrt{-g} \left(-\frac{R}{2} - \frac{1}{4}F^2 - \frac{1}{2} \left((\partial_\mu \varphi)^2 - V(\varphi) \right) - \frac{\lambda}{8f} \varphi F \tilde{F} \right)$$

Axion Monodromy

How to Connect them with the SM?

Let us Extend SM Gauge Symmetry by an $SU(2)_R$ and couple it to Axion Inflaton!

o Left-Right Symmetric Model + axion!

• Minimal Scenario of SU(2)-axion inflation A.M., 2016 f<0.1 Mpl & λ <0.1

$$S_{AM} = \int d^4x \sqrt{-g} \left(-\frac{R}{2} - \frac{1}{4}F^2 - \frac{1}{2} \left((\partial_\mu \varphi)^2 - V(\varphi) \right) - \frac{\lambda}{8f} \varphi F \tilde{F} \right)$$

Axion Monodromy

A. M. arXiv: 2012.11516

• An SU(2) gauge extension of SM with 3 Right-handed Neutrinos coupled to it.

J. C. Pati and A. Salam, Phys. Rev. D 10, 275-289 (1974) R. N. Mohapatra and J. C. Pati, Phys. Rev. D 11, 2558 (1975) G. Senjanovic and R. N. Mohapatra, Phys. Rev. D 12, 1502 (1975)

• An SU(2) gauge extension of SM with 3 Right-handed Neutrinos coupled to it.

J. C. Pati and A. Salam, Phys. Rev. D 10, 275-289 (1974) R. N. Mohapatra and J. C. Pati, Phys. Rev. D 11, 2558 (1975) G. Senjanovic and R. N. Mohapatra, Phys. Rev. D 12, 1502 (1975)

• An SU(2) gauge extension of SM with 3 Right-handed Neutrinos coupled to it.

J. C. Pati and A. Salam, Phys. Rev. D 10, 275-289 (1974) R. N. Mohapatra and J. C. Pati, Phys. Rev. D 11, 2558 (1975) G. Senjanovic and R. N. Mohapatra, Phys. Rev. D 12, 1502 (1975)

- 1. Ad hoc parity violation
- 2. Accidental B-L global symmetry
- 3. Vacuum Stability problem
- 4. Strong CP problem

• An SU(2) gauge extension of SM with 3 Right-handed Neutrinos coupled to it.

• Axion is the inflaton which is coupled to $SU(2)_R$

 $SU(2)_{R}$ -axion Inflation

A. M. arXiv: 2012.11516

Gauge field Production by Axion

• SM Gauge fields are diluted by inflation & unimportant , $BUT SU(2)_R$:

()

Axion inflaton

Gauge field (active in inflation)

 W_R

 W_R

 $SU(2)_{R}$ Gauge Field • $\delta A_i^a = B_{\pm}^a(t,k)e_i^{\pm}\left(\vec{k}\right)$ $B_{\pm}^{\prime\prime} + [k^2 + \xi k\mathcal{H}] B_{\pm} \approx 0$ effective frequency Given by the BG $(\xi = \frac{2\lambda \partial_t \varphi}{fH})$ Vacuum structure Axion field $\langle \varphi \rangle$

Axion field $\langle \varphi \rangle$ $(\xi > 0)$ Slow-roll A $(\xi < 0)$ $SU(2)_{\mathbb{R}} Gauge Field$ • $\delta A_i^a = B_{\pm}^a(t,k)e_i^{\pm}(\vec{k})$ $B_{\pm}^{\prime\prime} + [k^2 + \xi k\mathcal{H}]B_{\pm} \approx 0$

effective frequency Given by the BG ($\xi = \frac{2\lambda\partial_t \varphi}{fH}$)

Vacuum structure

For $\xi > 0$ Short tachyonic growth of B_+

Chiral Field

Particle Production

Gauge Field sources Primordial GWs

• $\delta A_i^a(t, \vec{k}) = B_{\pm}^a(t, k)e_i^{\pm}(\vec{k})$ is governed by $B_{\pm}^{\prime\prime} + [k^2 + \xi k\mathcal{H}] B_{\pm} \approx 0$

nande

• That sourced the GWs

$$h_{\pm}^{\prime\prime} + [k^2 - \frac{a^{\prime\prime}}{a}] h_{\pm} = \mathcal{H}^2 \Pi_{\pm}[B_{\pm}]$$

Gravitational waves have two uncorrelated terms

$$h_{\pm} = \underline{h_{\pm}^{vac}} + \underline{h_{\pm}^{s}}$$
Vacuum Sourced by
GWs B_{\pm}
unpolarized Polarized
 $h_{\pm}^{vac} = h_{\pm}^{vac} \quad h_{\pm}^{s} \neq h_{\pm}^{s}$

<u>Novel Observable Signature: CMB</u>

• The sourced tensor modes is Highly non-Gaussian.

Agrawal, Fujita, Komatsu 2018

 That can be probe with future CMB missions., e.g. Litebird and CMB-S4!

Equilateral Shape

Maresuke Shiraishi, Front. Astron. Space Sci. 2019

Novel Observable Signature: Beyond CMB

 Comparison of sensitivity curves for LiteBIRD, Planck, LISA & BBO.

Thorne, Fujita, Hazumi, Katayama, Komatsu & Shiraishi, 2018

Lepton & quark Production by $SU(2)_R$

Lepton & quark Production in Inflation

o Left-handed fermions are diluted by inflation, BUT

• Right-handed fermions are generated by $SU(2)_R$ gauge field:

 ψ_R

 ψ_R

 W_R

Lepton & quark Production in Inflation

o Left-handed fermions are diluted by inflation, BUT

o Right-handed fermions are generated by $SU(2)_R$ gauge field:

The key ingredient is the Chiral anomaly of $SU(2)_R$ in inflation:

$$\nabla_{\mu} J^{\mu}_{\rm B} = \nabla_{\mu} J^{\mu}_{\rm L} = \frac{g^2}{16\pi^2} tr[W\widetilde{W}]$$

 $n_{\rm B} = n_{\rm L} = \alpha_{inf}(\xi) H^3$ $(\alpha_{inf}(\xi) \sim \frac{g^2}{(2\pi)^4} e^{2\pi\xi}$

 W_R

RH neutrinos

 ψ_R

 ψ_R

Summary of the mechanism:

Summary of the mechanism:

This setup prefers Left-Right symmetry breaking scales above $m_{W_R} = 10^{10} \text{ GeV }!$ (same as scales suggested by the non-SUSY SO(10) GUT models with intermediate LR symmetry scale.)

- I) Particle physics of Inflation
- II) Origin of matter asymmetry
- III) Origin of Neutrino mass
- IV) Particle nature of DM

of Particle Cosmology

Questions

- Curious cosmological coincidences $\eta_B \simeq 0.3 P_{\zeta}$ and $\Omega_{DM} \simeq 5\Omega_B$!
- o What do Gauge Fields do in Inflation? May be coupled to axion inflaton
- O Does it come with a cosmological signature? Yes! Chiral, non-Gaussian GWs.
- O How Inflaton & its Gauge Field are connected to the SM? Left-Right Symmetric Model + axion!
- (Is there a simple, elementary & minimal set-up that can solve all the above issues? Yes!)
 This Set-up is a complete beyond SM that can solve I-IV & explain (1)

Minimal Set-up:

-Inflation Particle Physics: a scalar singlet BSM

- -Unpolarized, Gaussian GWs
- -Baryon asymmetry (BAU):

CP violating phases in neutrino sector

-Sterile neutrino DM: $m_{N_1} = O(10) keV \& x$ -ray radiation!

SU(2)_R-Axion Inflation:

-Inflation Particle Physics (BSM): Axion & its SU(2) Gauge Field

-Chiral, non-Gaussian GWs

- BAU: Spontaneous CP violation in inflation
- Right neutrino DM: $m_{N_1} = O(1)GeV$ & gamma-ray radiation!
- Simultaneous Baryon & DM production in inflation
- Explains coincidences among cosmological parameters ($\eta_B \sim P_R \& \Omega_{DM} \simeq 5 \Omega_B$)

scale

CMB

CMB

gamma-ray

photon

Baryon & Dark Matter Production

