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Binary system
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Post Newtonian wave-forms
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Dependence approximated by two parameter model:
o = XLz M2 X2 GX1e F X2 So far only the chirp mass, mass
mi + me q+1 ratio and spin-orbit phase have
1 A P
Xp = g max (41511, A28y, 1) = max (XL Ly ——eXa, L) been detected in an event.
1My A1q

In addition there can be precession in the orbit.
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What can we learn

e Properties of Black Holes and Neutron Stars.
e Test the laws of gravity in a regime we have never done so before.

¢ Processes that result in Black Hole and Black Hole binary systems.



Status of Observations




LIGO Observing RUNS |, 41,6 volume from where binary black

holes are visible by LIGO in O3 there
are roughly 10 million Milky Way size
galaxies.

In these volume there were forty black
hole mergers in six months.
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Multi-messenger Observations of a Binary Neutron Star Merger
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Abstract

On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time
12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The
Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of
~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky
region of 31 deg” at a luminosity distance of 40§ Mpc and with component masses consistent with neutron stars. The
component masses were later measured to be in the range 0.86 to 2.26 M. An extensive observing campaign was
launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with
the TAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One-
Meter, Two Hemisphere (IM2H) team using the 1 m Swope Telescope. The optical transient was independently
detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early
ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a
redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at
the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely
arise from a physical process that is distinct from the one that generates the UV /optical /near-infrared emission. No
ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches.
These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in
NGC 4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the
radioactive decay of r-process nuclei synthesized in the ejecta.

Key words: gravitational waves — stars: neutron
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Figure 1. Localization of the gravitational-wave, gamma-ray, and optical signals. The left panel shows an orthographic projection of the 90% credible regions from
LIGO (190 deg?; light green), the initial LIGO-Virgo localization (31 deg?; dark green), IPN triangulation from the time delay between Fermi and INTEGRAL (light
blue), and Fermi-GBM (dark blue). The inset shows the location of the apparent host galaxy NGC 4993 in the Swope optical discovery image at 10.9 hr after the
merger (top right) and the DLT40 pre-discovery image from 20.5 days prior to merger (bottom right). The reticle marks the position of the transient in both images.
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Figure 2. Timeline of the discovery of GW170817, GRB 170817A, SSS17a/AT 2017gfo, and the follow-up observations are shown by messenger and wavelength
relative to the time 7. of the gravitational-wave event. Two types of information are shown for each band /messenger. First, the shaded dashes represent the times when
information was reported in a GCN Circular. The names of the relevant instruments, facilities, or observing teams are collected at the beginning of the row. Second,
representative observations (see Table 1) in each band are shown as solid circles with their areas approximately scaled by brightness; the solid lines indicate when the
source was detectable by at least one telescope. Magnification insets give a picture of the first detections in the gravitational-wave, gamma-ray, optical, X-ray, and
radio bands. They are respectively illustrated by the combined spectrogram of the signals received by LIGO-Hanford and LIGO-Livingston (see Section 2.1), the
Fermi-GBM and INTEGRAL /SPI-ACS lightcurves matched in time resolution and phase (see Section 2.2), 1’5 x 15 postage stamps extracted from the initial six
observations of SSS17a/AT 2017gfo and four early spectra taken with the SALT (at 7. + 1.2 days; Buckley et al. 2017; McCully et al. 2017b), ESO-NTT (at
t. + 1.4 days; Smartt et al. 2017), the SOAR 4 m telescope (at 7. + 1.4 days; Nicholl et al. 2017d), and ESO-VLT-XShooter (at 7. + 2.4 days; Smartt et al. 2017) as
described in Section 2.3, and the first X-ray and radio detections of the same source by Chandra (see Section 3.3) and JVLA (see Section 3.4). In order to show
representative spectral energy distributions, each spectrum is normalized to its maximum and shifted arbitrarily along the linear y-axis (no absolute scale). The high
background in the SALT spectrum below 4500 A prevents the identification of spectral features in this band (for details McCully et al. 2017b).
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Masses of individual Black Holes

The BHs observed by LIGO are surprisingly heavy. They are both heavier than
the BH in binaries in our own galaxy and some of them seem heavier than

what our theoretical calculations seem to allow.
-_I_-- n

Massos In the Stollar Graveyard

A

Figure 1. Masses and spins for 10 black holes
with approximate error bars. The three high-
mass-X-ray-binary systems, LMC X-1, Cygnus
X-1 and M33 X-7 are indicated by names above
the line and in red online.
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High Mass End after O2
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Figure 4. The left-hand panel shows compact object masses (mco) from GW detections in O1 and O2, with the black
squares and error bars representing the component masses of the merging black holes and their uncertainties, and red triangles
representing the mass and associated uncertainties of the merger products. The horizontal green line shows the 99th percentile of
the mass distribution inferred from the Model B PPD. In the right-hand panel, the predicted compact-object mass is shown as a
function of the zero-age main sequence mass of the progenitor star (mzams) and for four different metallicities of the progenitor
star (ranging from Z = 107* to Z = 2 x 1072, Spera & Mapelli 2017). This model accounts for single stellar evolution from the
PARSEC stellar-evolution code (Bressan et al. 2012), for core-collapse supernovae (Fryer et al. 2012), and for pulsational-pair
instability and pair-instability supernovae (Woosley 2017). The shaded areas represent the lower and upper mass gaps. There
is uncertainty as to the final product of GW170817. It is shown in the left-hand panel to emphasize that BNS mergers might
fill the lower gap.
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High Mass End

It

There are several examples of events with masses above the pair instability threshold.

Note that there is already one event O2 (GW170812) in the |IAS sample. GW170729 was also

heavy although consistent with the cut-off. It was marginal in the LIGO pipeline but was
completely above the background in our search.
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GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by
LIGO and Virgo during the First and Second Observing Runs
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Effect of PSD drift and vetoes

Livingston, bank BBH (0, 0) triggers in 02 Livingston, bank BBH (3, 0) triggers in 02
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Note that these plots are produced with data after masking (holes + in-painting).
Non-G of the data results in orders of magnitude increase in the rate of triggers.

Even in this heavy BBH bank all the outliers in a single detector are real events. Light BBHs and BNS have
basically no glitches after masking all the non-G is PSD drift.

Trigger rate for PyCBC above 64 approx 10-4 Hz.
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Sensitivity Comparison

Prior to demanding consistency between
detectors

Our incoherent limit -
LVC H+L limit
L1 rank saturates
Venumadhav+19
New Events

LVC events
Candidates |
20000 x background

0 20 40 60 30 100 120
P

GW170729
LIGO FAR=1in 5 yrs

IAS FAR < 1in 20000 O2 =1 in 6500 yrs
(saturated by the amount of background
we collected)

Additional suppression approximately
Delta snr22=20. In trigger distributions
going from 40 to 60 is approximately 3
orders of magnitude in the rate.

(90/64)12=1.2 and (90/64)32= 1.7

Equivalent to reducing the strain noise
amplitude by ~ 20 %

Equivalent to increasing the volume
by ~ 70 %

You can reach the same conclusion about LVT during O1. The plot looks very similar.
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of low mass
companions.

Note also GW151226

Non-interacting dark
companions have recently been
discovered. Latest example:
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Compact binaries

To merge due to emission of GW
radiation two 20 solar mass black
holes need to be closer than 30 solar
radil.

The massive stars that are the
progenitors of these black holes are
much bigger than that during their
giant phase. How did the black holes
come together?

Color, luminosity and sizes of stars
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® Spin

e Eccentricity

There already Is interesting spin
iInformation



Spin measurements Xet = (m1xiz + max2:)/M
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Spins are small. The distribution is not consistent with no spin. All the significant detections
are on the positive spin side (small caveat, positive spin events are louder). This points to a
significant contribution of the binary channel.

There is no evidence for negative spin.

Several of the spins that are significantly different from zero are still small. Not very
consistent with the naive tide scenario.



Spin measurements
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The IAS independent
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Summary

O1: one new events (LIGO had 3)
O2: six new events (LIGO had 7)

0O2: 2 “detector and a half” events

O2: One intriguing triplet of events from the same location in the sky and the
same parameters

Approximately double the volume where events can be found. The criteria to
declare an event is the same.
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orders of magnitude in the rate.

(90/64)12=1.2 and (90/64)32= 1.7

Equivalent to reducing the strain noise
amplitude by ~ 20 %

Equivalent to increasing the volume
by ~ 70 %

You can reach the same conclusion about LVT during O1. The plot looks very similar.



Steps in a search pipeline

e Compute waveforms.

* Define a search strategy and construct a template bank.

» Estimate detector noise and account for its non-stationary nature.

e Detect bad data segments ( glitches") and insulate good data from them.
e Compute triggers and find coincident ones.

e Asses if triggers look like GW and veto those that don'’t.

e Assess if triggers are consistent between detectors.

e Estimate the background.
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Splitting in Banks

O1: one new events in bank 3

0O2: six new events in banks 3
and 4

BBH 3 + BBH 4 = 271 templates.
The look elsewhere effect in the
heavy BBH banks is down by 2
orders of magnitude relative to
the BBH bank.

Bank |mi (MQ) ma (MQ) M (MQ) Qmin |X1,2|max C Acq | Nsubbanks dsubbanks Lmax,subbanks Ntemplates
BNS 0 < 1.1 1 2 777.0 48 806
BNS 1 | (1,3)  (1,3) (L1,1.3) — 099 |0.05055 1 2 434.3 23 856
BNS 2 > 1.3 1 2 824.6 43 781
NSBH 0 <3 1 4 753.4 84641
NSBH 1| (3,100) (1,3)  (3,6) 1/50 0.99 [0.05 0.5 2 6,6 259.5, 166.8 85 149
NSBH 2 > 6 3 544  875,61.2,94 15628
BBH 0O <5 0.55 1 3 270.6 8246
BBH 1 (5,10) 055 2 4,4 113.7, 50.0 4277
BBH 2 | (3,100) (3,100) (10,20) 1/18 0.99 [0.05 0.5 3 3,43  41.5,33.5,10.3 1607
BBH 3 (20, 40) 045/ 3 222  11.7.10.8,4.9 225
BBH 4 > 40 035 5  2.2.21.129,20,1.1,0.7,0.5 46
Total 316 262




Philosophy

If a piece of data cannot be explained by either Gaussian noise or a
gravitational wave signal of the type we are looking at it is discarded.

The residuals in the remaining should follow Gaussian statistics
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GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by
LIGO and Virgo during the First and Second Observing Runs
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FIG. 15. Normalized spectrograms of the time around common noise artifacts with a time-frequency evolution of a related trigger template
overlaid. Top Left: Scattered light artifacts at Hanford with the template of trigger 170616 overlaid. Top Right: A 60-200 Hz nonstationarity
at Livingston with the template of trigger 170412 overlaid. Bottom Left: A short duration transient at Livingston with the template of trigger
170630 overlaid. Bottom Right: A blip at Hanford with the template of a sub-threshold high mass trigger overlaid.
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Effect of PSD drift and vetoes

Livingston, bank BBH (0, 0) triggers in 02 Livingston, bank BBH (3, 0) triggers in 02
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Note that these plots are produced with data after masking (holes + in-painting).
Non-G of the data results in orders of magnitude increase in the rate of triggers.

Even in this heavy BBH bank all the outliers in a single detector are real events. Light BBHs and BNS have
basically no glitches after masking all the non-G is PSD drift.

Trigger rate for PyCBC above 64 approx 10-4 Hz.



Summary

The origin of BH binaries is an astrophysical puzzle. We might be able to solve it in the near future
by studying the properties of individual systems.

Puzzling results in the heavy and light ends of the BH mass function. Spin distribution begins to
be informative.

The availability of the LIGO data gives the community an opportunity to try new ideas and
propose new methods. We are very grateful to the LVC.

We have developed a new pipeline and tried to incorporate several new elements, a new
geometric template bank algorithm, PSD drift correction, aggressive data masking and hole filling,
objective vetoing of triggers, coherent combination of detectors, etc.

We estimate that our pipeline is sensitive to twice the volume.We have found one new event in O1
and six new events in O2 and produced a new list of sub-threshold candidates. The properties of
some of these new events are quite interesting.

We think that our improvements carry over to the O3 data. Unfortunately that data is not public
but will be soon.
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Advanced Ligo Observing Runs
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Neutron star mergers

 What happens when two neutron stars merge? What should
one see at different wavelengths and in different directions?

e Sizes of neutron stars (high frequencies in the GW signal)
e What is left after the merger?

e Origin of heavy elements (r-process elements)

e Speed of propagation of gravitational waves (part in 1019)

e Distance scale (Hubble constant; error 10 km/s/Mpc per
event)



Binary Black Holes (stellar)

Do BH behave as GR predicts?

Distance scale (Hubble constant; no counter-part so only
statistical through clustering)

Properties of the evolution of massive stars (BH mass vs
initial mass)

What is the origin of the black hole binaries?
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Parameters of new detections
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Events in O1 & O2

Binary black hole events in O1 and 02

;: High spin points to this system being formed
- through binary evolution. Inconsistent with the
iIsotropic prior, meaning it is inconsistent with
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FIG. 7: Binary black holes events reported from O1 and O2, in the plane of source-frame total mass vs. effective spin. In blue
are shown the 10 BBH events reported in GWTC-1 [1], all of them are certainly astrophysical in origin (pastro = 1). Color
coded by pastro are shown 7 additional events with pasiro > 0.5 that our previous searches found [2, 4]. In black we show

GW170817A. Displayed are 1o probability contours, i.e. enclosing 1 — e~ /% ~ 0.39 of the probability distribution.



Single detector search
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Single detector

search

triggers similar to GW170817A

# of triggers
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triggers similar to GWC170402
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FIG. 3: Distributions of L1 SNR? for triggers for templates
that are similar (match > 0.9) to the best-fit templates for
the two newly found events, that occur at times when the
H1 detector is operative. Vertical red lines mark the values
of p? for the two events. To give context to the amount of
phase space that is included in this plot, the upper (lower)
panel includes triggers from 28% (0%) of bank BBH 4, and
1.8% (3.6%) of bank BBH 3.
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declared gravitational wave signals. The seventh is
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FIG. 8: The table in the left-hand panel shows the number of veto-passing L1 triggers in each sub-bank above a few
threshold values of the SNR. The non-uniform numbers of triggers with pf > 65 shows that glitches are localized within
certain sub-banks. The plot in the right-hand panel shows the coefficients labeling the templates for triggers above the
thresholds for bank BBH (2, 2). Note that glitches are localized within a small region of parameter space.
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Single detector search
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Potential Lensing Event
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Posteriors

Me=3125;

—— with flat y.¢r prior

— with 1sotropic spin prior

 The isotropic spin prior penalizes
high aligned spins. The maximum
likelihood point is penalized
severely.

 Adopting a flat prior in Xeff leads
to significant shifts in parameters

- The data has no information
about the perpendicular spin
component.
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“Very massive single detector event”
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“Highly spinning single detector event”
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New template bank construction
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New template bank construction
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Basic estimate of the efficiency

Elbert et al. 1703.02551
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Figure 6. The shaded band shows the joint region of parameter space in
binary efficiency € and merger timescale 7 that reproduces the merger rate

density of black holes reported by Abbott et al. (2016b) for all black hole
pairs more massive than 5M .
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Figure 2. The number of remnant black holes per galaxy as a function
of galaxy stellar mass, Ny, (M), for black holes of mass mass myp;, >
10, 30, or 50M . The squares (corresponding to 30M ¢ black holes) are
color coded by the median galaxy metallicity. We see that for low metal-
licities, Ny, o< M, in all cases. For the most massive black holes (30, 50
M), the relation breaks when galaxies become too metal rich to produce
remnants in proportion to their total stellar mass — these black holes form
only in the low-Z tail of the distribution. At the highest stellar masses, the
relations begin to rise again, when the relation between M, and Z becomes
flat.



The “classic’” scenario

Within the large errors the
estimate based on these two
systems matches the LIGO rate

Bulik et al. Apd 730:140 (2011)
BH  WR Star  Period D fmerge Chirp Mass

IC10X1 23Moe 32Moe 14days 20Ro 3 Gyrs 15-26 Mo

NGC 300 X1 20Me 26 Mo 1.4days 22Ro 3 Gyrs 11-15 Mo

LIGO Chirp masses from 9 Meo(GW151226) to 28 Mo(GW150914)



Tides on the WR star s
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