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Microscopics of Black Hole Entropy

I The Bekenstein-Hawking area law for black hole entropy:

S =
A

4GN
.

I In favorable cases string theory offers a microscopic
interpretation of the black hole: specific constituents, ...

I Statistical understanding S = ln Ω of the area law and more:
higher dimension operators, quantum corrections, ...

I These developments are among the most prominent
successes of string theory as a theory of quantum gravity.



AdS5 Holography

I The best studied example of holography: String theory on
AdS5 × S5 is dual to N=4 SYM in D = 4.

I Microsopic details well understood (Quantum Field Theory!)

I The area law entropy of black holes in AdS5 is a crude
target: just the asymptotic density of states.

I Yet: only recently were quantitative agreements
established in this context.
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This Talk

Overall focus:
Supersymmetric AdS5 black holes and their nearBPS relatives.

Outline:

I Black hole thermodynamics: “phenomenology”.

I Lessons from black holes in AdS3.

I Relation to nAdS2/CFT1 correspondence.

I Structure of microscopic theory ⇒ some puzzles.

Ongoing research (supported by DoE) with Sangmin Choi, Nizar Ezroura,

Junho Hong, Siuyl Lee, Billy Liu, Jim Liu, Jun Nian, Shruti Paranjape,

Yangwenxiao Zeng.



Quantum Numbers

I Geometry: AdS5 × S5 has (superconformal extension of)
SO(2, 4)× SO(6) symmetry.

I Fields in SO(2, 4) representations:
conformal weight E and angular momenta Ja,b.

I Fields in SO(6) representations: R-charges QI (I = 1, 2, 3).

I So asymptotic data of (electric) black holes in AdS5:
Mass M, Angular momenta Ja,b, and 3 R-charges QI .



Classical Black Hole Solutions

I General supergravity solution (Wu ’11) .
Independent mass M, angular momenta Ja,b, R-charges QI .
Not widely known (and exceptionally complicated).

I General BPS (supersymmetric) solution: Gutowski+Reall ’05.

I BPS mass = “ground state energy” (g = `−1
5 ):

M =
∑
I

QI + g(Ja + Jb)

Novel features (not shared by asymptotically flat black holes):

I Only 2 SUSY’s preserved = 1
16 of maximal.

I Quantum numbers QI , Ja, Jb are related by a nonlinear
constraint. Specifically, rotation is mandatory.



The Black Hole Entropy (BPS limit)

S = 2π

√
Q1Q2 + Q2Q3 + Q1Q3 −

1

2
N2(Ja + Jb)

I QI , Ja,b = integral charges. N =rank of dual gauge group.

I There are two scales in the problem: g = `−1
5 and G5 .

I They are related as π
4G5

`3
5 = 1

2N
2.

I Classical charges are ∼ N2 so the entropy is also ∼ N2.



The Constraint on Conserved Charges

BPS black holes all have charges satisfying:

h ≡
(

(Q1Q2 + Q2Q3 + Q1Q3)− 1

2
N2(Ja + Jb)

)(
1

2
N2 + (Q1 + Q2 + Q3)

)
− 1

2
N2JaJb + Q1Q2Q3 = 0

Corollary: two distinct deformations break supersymmetry

I Recall: T = 0︸ ︷︷ ︸
extremality

⇔ M = Mext︸ ︷︷ ︸
lowest mass (given conserved charges)

.

I Standard SUSY breaking: mass exceeds Mext.
Description: raise the temperature ⇒ T > 0.

I Alternative: violate constraint by adjusting conserved
charges while preserving T = 0 (retain M = Mext).



Constraint Follows from Supersymmetry

I (Inaccurate) lore: constraint required to avoid naked closed
timelike curves.

I SUSY algebra + unitarity gives BPS bound:

{Q,Q†} = M − MBPS︸ ︷︷ ︸∑
I QI +g(Ja+Jb)

≥ 0

I Mass M of all black hole solutions satisfies identity with form

M −MBPS = (. . .)2︸ ︷︷ ︸
≡0 for T=0

+ (. . .)2 ≥ 0

BPS saturation shows 2nd (. . .)2 = 0 ⇒ constraint.

I Constraint follows from BPS with no other assumptions.



Detour: BTZ Black Holes

Example: black holes in AdS3×S3 dual to CFT2 with (4, 4) SUSY.

Analysis in AdS3 spacetime and in CFT2 are very similar.

Four quantum numbers: ε, p (AdS3), jR , jL (S3).
Conformal weights hR,L = 1

2 (ε± p) + 1
4kR,L and R-charges jR,L.

Partition function:

Z = Tr e2πiτ(L0− 1
4
kR)+2πizjR−2πi τ̄(L̄0− 1

4
kL)+2πi z̄ jL

SL(2,R)× SL(2,R) invariant NS-vacuum L0, L̄0 → 0 controlled by
Casimir energy.



BTZ Black Holes: Statistical Description

Modular transform τ → −τ−1 maps vacuum to statistical regime:

lnZ =
πikR
2τ

(
1− 4z2

)
− πikL

2τ̄

(
1− 4z̄2

)
Legendre transform gives the correct black hole entropy:

S = 2π

√
kR(E + P)− 1

4
J2
R + 2π

√
kL(E − P)− 1

4
J2
L

Extremality (T = 0): 1
2 (E − P) = 1

4kL
J2
L

BPS saturation (chiral primary):

1

2
(E − P) +

1

4
kL︸ ︷︷ ︸

conformal weight hL

=
1

2
JL ⇒

consistency
JL = kL

2nd condition



Perspectives on Constraint from AdS3/CFT2

I Supersymmetric states in CFT2:
Chiral primaries h̄ = 1

2 jL with 0 ≤ jL ≤ 2kL (unitarity).

I Supersymmetric black hole geometries:
Exist only for JL = kL (so two conditions on parameters).

I Elliptic genus: index entirely holomorphic ⇒ co-dimension
2 in parameter space. Inserting (−)F “averages” over all jL.

Physics lesson: the constraint emerges from supersymmetry of
the ensemble average.



Another Perspective: SUSY Breaking Mechanisms

S = 2π

√
kR(E + P)− 1

4
J2
R + 2π

√
kL(E − P)− 1

4
J2
L︸ ︷︷ ︸

SUSY breaking excitations

I Conventional SUSY breaking (temperature T ):
Activate excitations in the L sector.

I Novel SUSY breaking:
L sector in ground state ⇒︸︷︷︸

JL 6=kL

E > EBPS = P + JL − 1
2kL.

Additional excitations in the R sector.

Aside: 4D extremal Kerr breaks SUSY by the “novel” mechanism.



AdS5 Black Hole: Heat Capacity

I Excite the black hole so mass above BPS bound

M = MBPS +
1

2

(
CT

T

)
T 2

CT is the black hole heat capacity (proportional to T ).

I Gravity computations give

CT

T
=

8Q3 + 1
4N

4(J1 + J2)
1
4N

4 + 1
2N

2(6Q − J1 − J2) + 12Q2

I Interpretation: number of degrees of freedom in low
energy excitions.
CT
T analogous to the central charge cL = 6kL.



AdS5 Black Hole: Capacitance

I BPS saturation implies the constraint so no SUSY if the
constraint is violated.

I Then the black hole mass exceeds the BPS bound:

Mext = MBPS +
1

2

(
Cϕ
T

)( ϕ
2π

)2
.

I Cϕ is the capacitance of the black hole.
(The potential ϕ is defined precisely later)

I Gravity computations give

Cϕ
T

=
8Q3 + 1

4N
4(J1 + J2)

1
4N

4 + 1
2N

2(6Q2 + J1 + J2) + 12Q2

I Note: Cϕ = CT . Excitations violating the constraint “cost”
the same as those violating the extremality bound!



nAdS2/CFT1 Correspondence

I All BPS black holes have AdS2 near horizon geometry.

I AdS2 does not allow excitations (with finite energy): they
always deform the AdS2 geometry.

I This strong IR dynamics in two dimensions has a universal
description in effective quantum field theory.

I There is a realization of the same dynamics in one dimension.

I A holographic duality: nearAdS2/nearCFT1 correspondence.

Sacdev, Ye ’93, Kitaev ’16; Maldacena, Stanford ’16.



Broken Scale Invariance

I A 1D theory (quantum mechanics) in appropriate universality
class: the SYK-model.

I A 2D theory in appropriate universality class:
Jackiw-Teitelboim gravity.

I Either way: scale invariant IR limit is trivial.

The quantum effective field theory describes the breaking of
scale invariance by the near IR theory.

I Presently: dimensionful order parameters heat capacity CT

and capacitance Cϕ break N = 2 superconformal invariance.



Schwarzian Description of N = 2 Superconformal Breaking

I The Schwarzian effective theory of broken scale invariance

I = −C
∫
∂D

du

[
∂3
uf

∂uf
− 3

2

(
∂2
uf

∂uf

)]
The dimensionful coupling constant C is the heat capacity.

I The effective 1D theory of broken N = 2 superconformal
invariance adds

I = −C
∫
∂D

du 2(∂τσ)2

The dimensionful coupling constant C is the capacitance.

I Upshot: the agreement CT = Cϕ follows from spontaneously
broken N = 2 superconformal symmetry.

Fu, Gaiotto, Maldacena, Sachdev ’16



Supersymmetric Index: not so Recent Developments

I Gravity = strongly coupled regime of the dual gauge theory.

I Foundation of reliable analysis: protected states.

I Preserved supersymmetry allows construction of the
supersymmetric index:

I (∆I , ωa) = Tr[(−)F e∆IQ
I +ωiJ

i
]

I Grading (−)F computes (bosons - fermions) ⇒ certain
short representations remain independent of coupling.

I Conventional wisdom: index O(1) (confined phace).

Insensitive to black holes O(N2) (deconfined phase).

Romelsberger ’05; Kinney, Maldacena, Minwalla, Raju ’05



Black Hole Entropy: Recent Claims

Partition function increases as O(N2):

lnZ = −N2

2

∆1∆2∆3

ωaωb

Insert (−)F ⇔ implement BPS condition by complex constraint

∆1 + ∆2 + ∆3 − ωa − ωb = 2πi

⇒
Legendre transform lnZ

S(Q I , J i ) = lnZ −∆IQ
I − ωiJ

i︸ ︷︷ ︸
∆I ,ωi at extremum subject to constraint

Result:

Re S(Q I , J i ) = 2π

√
Q1Q2 + Q2Q3 + Q1Q3 −

1

2
N2(Ja + Jb)

Im S(Q I , J i ) = 0 ⇔ constraint on conserved charges



Index Computations: Strategy

I Enumeration of free fields: single fields (letters), composite
fields (words), exponentiation (sentences?), singlet condition
⇒ unitary matrix model

Z (∆I , ωi ) =

∫
dU exp

[ ∞∑
n=1

1

n
f (n∆I , nωi )TrUTrU†

]
f (∆I , ωi ) = 1−

∏
I (1− e−∆I )

(1− e−ωa)(1− e−ωb)

I Supersymmetric localization
(ab initio or via Bethe vacua)

I ...

Upshot: consolidation using modern technology.

Contentious point: asymptotic behavior at large N.



Asymptotic Behavior of Matrix Model

I KMMR: single particle index f < 1 ⇒ eigenvalues repulsion
dominates ⇒ no condensation.

I New result “Cardy limit” (simple but justification dubious):

∑
n=1

1

n
[1−f (∆, ω)]TrUTrU† →

ωa,b�1
N2︸︷︷︸

rank SU(N)

1

ωaωb

∑
n=1,±

e±∆1±∆2±∆3

n3

I Better new result: modular invariance in 4D SCFT Gadde ’20

Also boils down to “maximal condensation”: TrUTrU† → N2.

Key subtlety: study complex potentials.



Deconfinement?

I The classical limit QI , Ja,b,M ∼ N2 � 1 is deconfined.

I Physics question: is the low temperature phase confined?

I AdS-Schwarzchild: large BH branch (F < 0) does not reach
T = 0 ⇒ confinement transition to AdS-gas at T < THP.



No Evidence of Phase Transition

I BPS surface has free energy F ≡ 0 (marginal bound state).
and co-dimension 2: T = 0 and ϕ = 0.

I No evidence of phase transition (F < 0 throughout) when
potentials are large ϕ ≥ 0 ⇔ Ω ≤ 1.



BPS as a Limit

I The partition function (with real potentials)

Z = Tr [e−β(E−E∗)+(ΦI−Φ∗
I )QI +(Ωi−Ω∗

i )Ji ] =
BPS

Tr [e∆IQI +ωiJi ]

BPS reference values are Φ∗I = 1,Ω∗i = 1.

I Low temperature limit (β =∞) identifies

Re ∆I = β(ΦI − Φ∗I ) = ∂TΦI

Re ωi = β(Ωi − Ω∗i ) = ∂TΩi

I Values of thermal derivatives ∂T computed in
spacetime/from microscopic free energy in fact agree.



Beyond Supersymmetry

I The index: insert (−)F or complexify potentials:

∆1 + ∆2 + ∆3 − ωa − ωb = 2πi

I Minimal physical assumption: count “same” degrees of
freedom also beyond the BPS limit.

I Extrapolation of constraint to the nearBPS regime:∑
I

(ΦI − Φ∗I )−
∑
i

(Ωi − Ω∗i ) = ϕ+ 2πiT

I Interpretation: the imaginary parts Im ∆I , Im ωa probe
violation of the constraint.



Supersymmetry Breaking is Protected

I Extremization of the entropy function with the generalized
constraint is straightforward.

I It accounts for the parameters of broken N = 2
superconformal symmetry.

I Example: the coefficient in the N = 2 Schwarzian description

CT

T
=

Cϕ
T

= Q I Im ∆I+JaIm ωa =
8Q3 + 1

4N
4(J1 + J2)

1
4N

4 + 1
2N

2(6Q − J1 − J2) + 12Q2



Summary

I We developed aspects of AdS5 black hole thermodynamics.

Focus: the BPS limit and near the BPS limit.

I Highlight: heat capacity and capacitance agree.

Interpretation: N = 2 extension of broken scale invariance.

I Highlight: may deform BPS constraint between charges.

Interpretation: deform complex constraint on potentials.


