Berry phase in quantum field theory

Po-Shen Hsin

California Institute of Technology

With Anton Kapustin (Caltech) and Ryan Thorngren (Harvard CMSA)

2004.10758

Diabolical point in quantum mechanics

• Spin ½ in magnetic field B: two eigenstates with energy $\pm \mu |B|$

$$H(B) = \mu \sigma \cdot B, \qquad B \in \mathbb{R}^3$$

- B = 0: degenerate zero energy states, codimension 3 in the parameter space \mathbb{R}^3 .
- $B \neq 0$: unique ground state with energy gap (i.e. trivially gapped)
- The point B = 0 has ground state differed from the surrounding region: "diabolical point" in the parameter space. [Berry]
- For generic Hamiltonian without symmetry, level-crossing occurs in codimension 3 (*H* spanned by 3 Pauli matrices) [von Neumann, Wigner]

B∈ R³ ● B=0

Describe "diabolical point" using Berry phase

- Removing diabolical points from parameter space creates non-trivial topology $R^3 \setminus 0 \sim S^2$. Detect diabolical point by the topology?
- Ground state wavefunction does not depend continuously on $S_{(\theta,\phi)}^2$: $|0\rangle_N = \left(\sin\frac{\theta}{2}e^{i\phi}, -\cos\frac{\theta}{2}\right), |0\rangle_S = \left(\sin\frac{\theta}{2}, -\cos\frac{\theta}{2}e^{-i\phi}\right)$. Transition function at equator $|0\rangle_N = e^{i\phi}|0\rangle_S$ [Berry], [Simon]

Berry connection $A_B = i \langle 0 | \partial_B | 0 \rangle$ with non-trivial Berry phase

Berry number: $\oint_{S^2} F_B / 2\pi = 1$

Berry curvature $F_B = dA_B$ has quantized period, has singularity at diabolical point

• Berry number $\neq 0 \Rightarrow$ not trivially gapped everywhere : if the theory were trivially gapped in \mathbb{R}^3 , S^2 would be contractible and the Berry number would be zero.

Diabolical Points in Many Body Systems (Outline)

• Critical points often sit at the end of first order phase transition lines

- There are also isolated critical points (diabolical points) in phase diagram surrounded by gapped phase with non-degenerate vacuum.
- Q1: What protects the stability of such diabolical critical points?

Diabolic Points in Many Body Systems (Outline)

 Usual argument for stability: symmetry protected topological (SPT) phase protects against symmetry preserving perturbations.
 SPT1 SPT2
 What about symmetry breaking perturbations or systems without

What about symmetry-breaking perturbations or systems without symmetry?

- Ans: Berry phase. Generalization of SPT.
- Q2: Does Berry phase have bulk-boundary correspondence? (Yes)
- Q3: What's the classification of Berry phases? (Cobordism group)
- Applications: use Berry phase to study Néel / Valence Bond Solid transition, and new tests for infrared Chern-Simons matter dualities

Berry Phase Protects Phase Transitions

- Parameter space *M* consists of trivially gapped region (blue) with possible diabolical loci (white) removed. Create non-trivial topology
- Promote the parameters to be position-dependent background fields ϕ : spacetime $\rightarrow M$
- Non-trivial topological term in effective action $S_{eff}[\phi]$ for configuration $\phi(x) \in S^r \subset M$ protects diabolical loci inside. (otherwise sphere would be contractible in M and the topological term is trivial) $S_{eff} \neq 0$ $S_{eff} = 0$

Effective action in quantum mechanics

- Let the parameter (magnetic field) to be periodic in time $B: S^1_{time} \to \mathbb{R}^3$
- Away from diabolical point (nonzero magnetic field), $R^3 \setminus 0 = S^2$: topological effective action

$$S_{\rm eff} = \int B^* \tau_1$$

 τ_1 is a 1-form on S^2 i.e. the Berry connection. Adiabatic $|0\rangle \rightarrow |0\rangle e^{iS_{\rm eff}}$ τ_1 undergoes gauge transformation across coordinate patches on S^2 . $e^{iS_{\rm eff}}$ is gauge invariant, but the effective Lagrangian is not

Effective action in quantum mechanics as Wess-Zumino-Witten term

- We can also write the effective action using the gauge invariant Berry curvature.
- Introduce one-parameter family of background B(t, s) defined on 2manifold Y that bounds S_{time}^1

$$S_{\text{eff}} = \int_{Y} d(B^* \tau_1) = \int_{Y} B^* H_2$$

- Berry curvature $H_2 = d\tau_1$ is a 2-form on S^2 with quantized period
- The action is an example of Wess-Zumino Witten (WZW) term. It is characterized by non-trivial map $S_{(t,s)}^2 \to S^2 \subset \mathbb{R}^3$ whose degree is the Berry number $\pi_2(S^2) = \mathbb{Z}$.

Effective action in (d+1) Dimension Spacetime

• Promote parameters to be spacetime-dependent background field $\phi: X_{d+1}^{\text{spacetime}} \to M$

Trivially gapped with diabolical loci removed, which creates topology.

The Berry phase is the topological term in effective action $S_{\rm eff}[\phi] = \int \phi^* \tau_{d+1}$

where τ_{d+1} is a (d+1)-form on parameter space M. $\tau_{d+1} \rightarrow \tau_{d+1} + d\lambda_d$

- $S_{\text{eff}}[\phi] = \int_{Y_{d+2}} \phi^* H_{d+2}$ for Y_{d+2} bounds spacetime and $H_{d+2} = d\tau_{d+1}$ has quantized period. Such WZW term can arise from $\pi_{d+2}(M)$.
- Family of lattice Hamiltonian systems: Berry phase is studied in [Kapustin, Spodyneiko]1

Include global symmetry (generalization of SPT phase)

- $S_{\rm eff}[\phi, A]$ with background gauge field A for the symmetry
- Example: Thouless pump for U(1) symmetry

 $S_{\text{eff}}[\phi, A] = \int_{X_{d+1}} A \wedge \phi^* \tau_d$, τ_d : closed *d*-form on parameter space

• U(1) current for spacetime-dependent parameter: charge associated with soliton configuration of ϕ

$$j = \star (\phi^* \tau_d), \qquad Q = \oint_{S^d} \star j = \oint_{S^d} \phi^* \tau_d$$

- Family of lattice Hamiltonian systems with U(1) symmetry: Thouless pump invariant studied in <code>[Kapustin, Spodyneiko]2</code>
- We will give example of diabolical points protected by higher-degree currents generating higher-form symmetry [Gaiotto,Kapustin,Seiberg,Willett],[Wen]

Example: Free Fermions in (1+1)d

• One Dirac fermion with complex mass $M = me^{i\alpha} \in \mathbb{R}^2$ $m\overline{\psi}e^{i\gamma_{01}\alpha}\psi = M\overline{\psi}_+\psi_- + h.c.$

The theory has $U(1)_V$ symmetry $\psi \to U\psi$.

- $M \neq 0$: gapped with a unique ground state.
- M = 0: codimension 2 gapless diabolic point.

• M = 0: mixed anomaly for $U(1)_A - U(1)_V$, but $U(1)_A$ absent for $M \neq 0$

Q: Can we add interaction to gap out the system preserving only $U(1)_V$ symmetry? (No. Diabolic point protected by Thouless pump invariant.)

Q: Is there family of trivially gapped interfaces depend continuously on the parameters? (No, example of bulk-boundary correspondence for Berry phase)

Diabolic Point Protected by Thouless Pump

• Denote the $U(1)_V$ background gauge field by A.

For |M| > 0 the effective action for massive fermion has the Thouless pump invariant that protects the diabolic point [Goldstone, Wilczek] $M = me^{i\alpha}$

$$S_{\rm eff} = \int A \frac{d\alpha}{2\pi} = \frac{1}{2\pi} \int \alpha dA = \int A \star j$$

 $\frac{1}{2\pi}\oint d\alpha = \frac{1}{2\pi}\oint d\arg M = 1$: the loop is not contractible. The gapless point at the origin cannot be completely removed.

• $U(1)_V$ current, $j = \frac{1}{2\pi} \star d\alpha$. For $\alpha = \alpha(t)$ periodic in time and winds origin N times: pumps charge $\Delta Q = \oint \star j = \frac{1}{2\pi} (\alpha(T) - \alpha(0)) = N$.

Perturbation cannot remove the diabolical point

- Consider bosonization description of the free fermion in (1+1)d with periodic scalars ϕ , θ . $U(1)_V$ symmetry $\theta \rightarrow \theta + \alpha$.
- Fermion mass corresponds to $\lambda_x \sin \phi + \lambda_y \cos \phi$, $M = \lambda_x + i\lambda_y$

 $\lambda_{\chi} = 0$: charge conjugation symmetry $Z_2: (\phi, \theta) \rightarrow (-\phi, -\theta)$ Perturbation cannot remove the diabolical point

• Decrease radius pass through the self-dual point, new relevant perturbations $\cos 2\phi$, $\sin 2\phi$. Deformation by $\cos 2\phi$ changes the phase diagram

First order phase transition: broken $Z_2: (\phi, \theta) \rightarrow (-\phi, -\theta)$

• Perturbation can only deform the diabolical point to be diabolical loci, and it persists in the phase diagram

Family of Interfaces $\alpha(x = -\infty) = 0$ x

• Interface labelled by α_0 has charge

$$\Delta q = \int \star j = \int d\alpha/2\pi = \alpha_0/2\pi , \qquad (\Delta q = 1 \text{ for } \alpha_0 = 2\pi)$$

• For $\alpha(x) = \alpha_0 \theta(x)$, bound state $\psi = \psi(0)e^{-\beta|x|}$ for $\beta > 0$. $\beta = m \sin(\alpha_0/2)$, energy $E = m \cos(\alpha_0/2)$

Single normalizable zero mode at $\alpha_0 = \pi$ [Jackiw, Rebbi]

Non-normalizable mode at $\alpha_0 = 0.2\pi$, merges with the bulk modes

• The existence of single zero mode and non-normalizable modes can also be found in smooth interfaces in this theory with Thouless pump

Boundary-Bulk Correspondence for interface

• The family of interfaces cannot be described by purely (0+1)d quantum mechanics for all α_0 . Suppose otherwise, effective action $\int q(\alpha_0) A_t dt$

 $q(\alpha_0) \in \mathbb{Z}$ is vacuum charge: jump only at gapless points and single-valued (sum of all jumps when α_0 varies from 0 to 2π is $\Delta q = 0$)

- Thouless pump: $\Delta q = 1$ when α_0 varies from 0 to 2π . Contradiction.
- Reason: q can also jump at delocalized point. Δq from interface gapless points = $-\Delta q$ from non-normalizable modes escaped to bulk spatial infinity (Thouless pump)

General Bulk-Boundary Correspondence

- Consider family of bulk with Berry phase in (d+1) dimension. Namely, the phase diagram has diabolical loci but otherwise trivially gapped with nontrivial topological term in the effective action
- If bulk system with Berry phase has a boundary, then the gap must close on the boundary for some parameter. This arises at boundary diabolical points (loci).
- Boundary-bulk ``Anomaly inflow'':

Total Berry number of boundary diabolical points

= Total Berry number in the bulk.

(Similar to the Nielsen-Ninomiya theorem)

General Bulk-Boundary Correspondence

- Consider a diabolic point (red) enclosed by the ball B^r ⊂ M described by bulk Berry phase.
- Consider a family of interfaces (special case: boundary) where the parameter interpolates between the North and South pole. The interpolation is a curve in B^r connecting the two points
- The interface whose curve hits the red point has diabolic point on the interface

$$B^r \subset M$$

General Bulk-Boundary Correspondence

• What happens when the family of interfaces varies away from the diabolic point? Restrict curves to lie on S^{r-1}

Bulk Berry phase implies that as the family of interfaces swipes around S^{r-1} there is additional phase, so the family cannot depend continuously on the parameters

• Represent the parameter on interface as intersection (green) of the curve with the equator S^{r-1}

$$M_{\rm interface} = S^{r-2}$$

Compute interface Berry phase: introduce 1-parameter family of background to count how many times green dot swipes around S^{r-2}.
 As green dot swipes S^{r-2} once, the blue curve swipes around S^{r-1} once Boundary Berry number = Bulk Berry number

Example: particle on a circle

- Particle on circle $x \sim x + 2\pi$ with U(1) symmetry and parameter α $\frac{1}{2}\dot{x}^2 + \frac{1}{2\pi}\alpha\dot{x}, \quad \alpha \sim \alpha + 2\pi, \quad U(1): x \to x + f$ Background U(1) gauge field $A: \frac{1}{2}(\dot{x} A)^2 + \frac{1}{2\pi}\alpha(\dot{x} A)$
- α is no longer periodic, violated by $\int A$. ``an anomaly'' [Córdova, Freed, Lam, Seiberg]
- The theory lives on the boundary of the bulk with Berry phase

$$S_{\rm eff}^{\rm bulk} = \int A \frac{d\alpha}{2\pi}$$

• Bulk-boundary correspondence: level-crossing occurs on boundary at some α (in fact, $\alpha = \pi$)

Berry phase v.s. Anomaly: Two Free Dirac fermions in (1+1)d

• Mass $\bar{\psi}(M_0 + i\gamma^{01}M_i\sigma^i)\psi$, $M_A = (M_0, M_1, M_2, M_3) \in \mathbb{R}^4$

|M| > 0: gapped with a unique ground state. $\mathbb{R}^4 - \{0\} \sim S^3$

|M| = 0 codimension-4 gapless diabolical point.

- Gapless point |M| = 0 is protected by 't Hooft anomaly for Spin(4) symmetry only against symmetry-preserving perturbation
- Gapless point also protected by Berry phase, also against symmetrybreaking perturbations
- Effective action: one parameter family of background $Y_{(t,x,s)}$ with Wess-Zumino term $\pi_3(S^3) = Z$. $S_{eff} = \int \omega_2$, $H = d\omega_2$ the volume form of S^3 $H = 1/(6\pi |M|^4) \epsilon^{ABCD} M_A dM_B dM_C dM_D$ [Abanov, Wiegman]

Free Fermion in (2+1)d: No Perturbative Anomaly

Two Dirac fermions with mass term

$$mn_i \overline{\psi} \sigma^i \psi$$
, $n_i \in S^2$, $\sum n_i^2 = 1$

Gapped for m > 0, gapless for m = 0 (diabolical point of codimension 3)

- m = 0 has SU(2) symmetry, protected by mixed parity- SU(2) anomaly Also protected by Thouless pump invariant: skyrmion current $\pi_2(S^2) = Z$ $S_{\rm eff}[mn_i, A] = \int A_{\mu} j^{\mu} = \frac{1}{8\pi} \epsilon^{\mu\nu\rho} \epsilon^{ijk} \int A_{\mu} n_i \partial_{\nu} n_j \partial_{\rho} n_k$ [Abanov, Wiegman]
- Berry phase has infinite order i.e. remains nontrivial in any N-copy systems Parity anomaly has order 2: no anomaly by taking 2 copies, only robust against SU(2) sym preserving perturbation
- In addition, the effective action also has $\theta = \pi$ Hopf term $\pi_3(S^2) = Z$

Web of diabolical points related by gauging U(1) symmetry

• Starting from a system with diabolic loci protected by Thouless pump invariant, can we obtain new system protected by Thouless pump invariant? Gauging the U(1) symmetry [Kapustin, Strassler], [Witten]

 $S_{\text{eff}}[\phi, A] \rightarrow \text{gauging } U(1) \rightarrow S_{\text{eff}}^{\text{new}}[\phi, B] = S_{\text{eff}}[\phi, a] + \frac{1}{4\pi} ada - \frac{1}{2\pi} adB$ New U(1) magnetic symmetry $j = \star da/2\pi$. $S_{\text{eff}}[\phi, A] = \int A\phi^*\tau_2, \qquad S_{\text{eff}}^{\text{new}}[\phi, B] = \int B\phi^*\tau_2 + H[\phi] - \frac{1}{4\pi} BdB$

 Two free Dirac fermions in (2+1)d ⇒ Interacting U(1)₁ with two fermions (realizes phase transition betw S¹ sigma model and U(1)₂) protected by the same Thouless pump invariant

U(1) Gauge Theory with 2 Scalars in (2+1)d

• U(1) gauge theory with two Wilson-Fisher scalars deformed by SU(2)triplet mass $m^2 n_i \in \mathbb{R}^3$ $V(\phi) = m^2 n_i \phi^+ \sigma^i \phi + \lambda (\phi^+ \phi)^2$

•
$$m \neq 0$$
: $SU(2)$ symmetry explicitly broken. $U(1)$ gauge field is Higgsed
 $a = \frac{n_1 dn_2 - n_2 dn_1}{2(1 - n_3)} \Rightarrow da = -\frac{1}{2} \epsilon^{ijk} n_i dn_j dn_k$
Monopole \Rightarrow skyrmion $\pi_2(S^2) = Z$
The $U(1)$ magnetic symmetry $j = -\frac{1}{2\pi} \star da$ has Thouless pump
 $S_{\text{eff}}[m^2 n_i, A] = \frac{1}{8\pi} \epsilon^{\mu\nu\rho} \epsilon^{ijk} \int A_{\mu} n_i \partial_{\nu} n_j \partial_{\rho} n_k$

The phase transition m = 0 is protected by the Thouless pump invariant

Application: Deconfined Quantum Criticality

• Deconfined quantum critical point: scalar QED3 without Chern-Simons term is believed to describe a deconfined quantum critical point between the Néel state and the valence bound solid (VBS).

[Senthil,Vishwanath,Balents,Sachdev,Fisher]

Néel: broken SO(3) spin symmetry

SO(3) vector N_i Néel field ~SO(3) vector mass $m^2 n_i$

VBS: broken Z_4 lattice rotation symmetry

U(1) with two scalars: $SO(3) \times U(1)$ symmetry

Application: Deconfined Quantum Criticality

• The transition is protected by 't Hooft anomaly for $SO(3) \times U(1)$ symmetry against symmetry preserving perturbations.

[Benini,Hsin,Seiberg],[Wang,Nahum,Metliski,Xu,Senthil],[Komargodski,Sharon,Thorngren,Zhou].....

• Symmetry of the action is

 $(U(1)_{gauge} \times SU(2)_{global})/Z_2$ [Benini,Hsin,Seiberg]

Faithful flavor symmetry is SO(3)

SO(3) bundles that are not SU(2) bundles: changes the quantization of the flux of $U(1)_{gauge}$. Anomaly for the U(1) magnetic symmetry

$$\pi \int \frac{dA}{2\pi} w_2(SO(3))$$

Application: Deconfined Quantum Criticality

- The anomaly has order 2
- For lattice that does not respect $Z_2 \subset U(1)$ symmetry: the anomaly vanishes and does not offer protection to the phase transition.
 - For honeycomb lattice with Z_3 symmetry there could be intermediate trivially gapped phase $\mbox{[Jian, Zaletel], [Po,Watanabe,Jian,Zaletel]}$
- Here we show if there is a Z_N ⊂ U(1) symmetry for any N ≠ 1 there is non-trivial transition protected by the Thouless pump invariant.
 Does not need SO(3) symmetry. Protection even on honeycomb lattice where N = 3.

Generalization with Chern-Simons term and higher rank gauge group

- Chern-Simons matter theory: level k gives $\theta = k\pi$ Hopf term for the parameter field associated with $\pi_3(S^2) = Z$ [Wilczek,Zee]
- Magnetic charge corresponds to Skyrmion number

$$\oint \frac{da}{2\pi} = -\frac{1}{4\pi} \epsilon^{ijk} \oint n_i dn_j dn_k$$

Skyrmion has spin $\frac{\theta}{2\pi} = \frac{k}{2}$: agrees with the spin of the monopole [Wilczek,Zee]

• The discussion can be generalized to U(N) gauge theory

Application: New Test for Boson/Fermion Duality

- $U(N)_1$ with Wilson-Fisher scalars are conjectured to flow to free Dirac fermions in the infrared [Hsin,Seiberg] $2\psi \leftrightarrow U(N)_1 + 2\phi, \qquad N \ge 2$
- New consistency check: SU(2) adjoint mass deformation on both sides Constant mass: no information.

Novelty: promote mass to be spacetime-dependent.

- produces the same Berry phase effective action ($\theta = \pi$ Hopf term and the Thouless pump invariant)
- The effective action cannot be removed by adding local counterterm, must match across duality (not well-define at m = 0 where n_i are ill-defined)
- New test for web of dualities related by gauging or RG flow, e.g.

 $\psi \leftrightarrow U(1)_1 + \phi$ [Seiberg, Senthil, Wang, Witten], [Karch, Tong]...

Thouless Pump with Higher-Form Symmetry

- Similar analysis applies to (3+1)d U(1) gauge theory with 2 scalars
- The current $j = -\frac{1}{2\pi} \star da$ is a 2-form in (3+1)d: magnetic U(1) 1-form symmetry that transforms the 't Hooft line operators.
- Same computation implies that the phase transition is protected by Thouless pump invariant

$$S_{\rm eff}[m^2 n_i, A^{(2)}] = \frac{1}{8\pi} \epsilon^{\mu\nu\rho\sigma} \epsilon^{ijk} \int A^{(2)}_{\mu\nu} n_i \partial_\rho n_j \partial_\sigma n_k$$

 $A_{\mu\nu}^{(2)}$: background gauge field for the U(1) 1-form symmetry

Further Examples: Thouless Pump with Gravitational Invariant

- Free Weyl fermion in (3+1)d with complex mass $M = me^{i\alpha}$ |M| = m > 0: gapped with a unique ground state |M| = 0: codimension 2 gapless diabolical point
- Diabolical point protected by effective action for m > 0

$$S_{\rm eff} = \frac{1}{384\pi^2} \int \alpha \, {\rm Tr} \, R^2 = -\frac{1}{2\pi} \int d\alpha \, {\rm CS}_{\rm grav}$$

- The effective action cannot be removed by a well-defined function of M since $\alpha = \arg M$ is not well-defined at the origin. Berry curvature has singularity.
- This is called an ``anomaly'' in [Córdova, Freed, Lam, Seiberg]

Further Examples: Thouless Pump with Gravitational Invariant

$$S_{\rm eff} = -\frac{1}{2\pi} \int d\alpha \ {\rm CS}_{\rm grav}$$

- For $\alpha = \arg M$ winds around the origin of $x^1 x^2$ plane *n* times, there will be gapless chiral edge mode propagating along x^3 with $c_{-} = \frac{n}{2}$.
- If turn on coupled to U(1) gauge field, additional term $\frac{1}{8\pi^2}\int \alpha \operatorname{Tr} F^2$

Classification of Berry Phase

- There is no stable diabolical locus (protected by Berry phase) without symmetry in codimension m > d + 3. Intuitively, for region B^m in the parameter space contains the diabolic point, $\pi_{d+2}(S^{m-1}) = 0$ if m > d + 3.
- In general we propose the following classification for Berry phase: family of trivially gapped theories parametrized by M are classified by $\Omega_s^{d+1}(M)$

Where *s* represents additional structure (e.g. *SO*, *Spin*)

• Including symmetry G: replace the argument by $M \times BG$ possibly with twist (G action on M). If trivial M: known classification for SPT [Kapustin], [Freed, Hopkins]

Berry phases of other degrees as Symmetries

• Phase diagram can have topology not captured by the Berry phase in (d+1) dimension. E.g. What about $\pi_k(M)$ for $k \neq d + 2$?

They can define symmetry defects

• Example: 4d N = 1 SU(n) gauge theory with θ angle, $\theta \sim \theta + 2\pi$

Define interface such that θ changes by 2π across the interface

0-form symmetry defects associated with $\pi_1(M) = \pi_1(S^1) = Z$.

Symmetry permutes n vacua: spontaneously broken. ``vacuum-crossing'' [Sharon]

Berry phases of other degrees as Symmetries

- Similarly, $\pi_k(M)$ can define symmetry defect of various codimensions and they generate higher form symmetries. The symmetries may not act faithfully and may be spontaneously broken.
- It would be interesting to explore the implications of these symmetries.

Conclusion

- We use Berry phase to study diabolical points in phase diagram for system in general dimensions
- We argue that the theory with Berry phase implies the gap closes on the boundary for some parameter
- We discuss examples including free fermions and interacting gauge theory with bosons or fermions.
- Proposal for classifying family of invertible theories: cobordism group for the parameter space
- Applications include new evidence of the stability of the deconfined quantum critical point in Néel-VBS transition, and the infrared duality between free fermions and $U(N)_1$ Chern-Simons matter theory with scalars.

Thank you